fracking gets uglier

There’s plenty of controversy around fracking in the US.  But here we have a relatively informed public, with public officials who must respond to the balance of public opinion (whether it’s heightened oversight or direct election), and a pretty good basis of environmental laws.  A fair number of countries have observed our issues with fracking and environmental hazards, and said, “Thanks but no thanks.”  Notable bans have arisen in France and Germany, with proposals in the UK.  But developing countries are hungry for the cheap energy source, and China, for example, wants in, to the tune of 6.5 billion cubic meters of gas by 2015 and 100 billion cubic meters by 2020 (the US produced some 170 billion cubic meters of natural gas in 2011).

The first red flag in my mind is cutting corners.  My understanding is that the majority of the problems with aquifer contamination in Pennsylvania arose from shoddy well construction.  Pardon my stereotyping, but Chinese industries aren’t exactly known for their meticulous high-quality work, especially when there’s profit to be made…This makes me nervous.

But the second red flag upsets me more: where will the frack water come from?  China is not a country of abundant water resources, especially in the north.  And in contrast to the US or Canada, its people have little recourse if they have complaints about depleted or contaminated water resources.  Where will the water come from?  Will Chinese central planners favor industry over people?  It has happened before (just Google “chemical spill China” and see how many different incidents pop up, e.g., this one).

Never mind that it apparently takes 3 years to get environmental laws on the books, and wastewater disposal (currently one of the main problems with fracking in the US) is not one of China’s strong suits.  Fracking might help the Chinese economy, but my bet is, it’s going to get really ugly really quickly.  I’m glad we have home-grown natural gas to rely upon — far less guilt.

drugs in drinking water

One of those news items that tends to freak out the general public is the idea of pharmaceuticals and personal care products (e.g., shampoo) in our water supplies.  There’s birth control in the water!  There’s ibuprofen in the water!  There’s Prozac in the water!  Time to panic, indeed.  What the news media doesn’t report (and, I suspect, doesn’t understand) is that the concentrations we’re talking about here are low.  Reeeeaaallly low.  Let’s think about a generic liter of water (a liter is a little more than a quart, for the metrically challenged out there).  A generic liter of water weighs about 1 kg / 1000 g / 2.2 lbs.  In the environment, it could easily have 100 mg (0.1 g) of calcium carbonate dissolved in it.  Calcium and carbonate are considered major ions in drinking water.  More minor ions include chloride (about 9 mg per liter in my drinking water supply (0.009 g)) and fluoride, added for dental health (about 0.8 mg per liter – 0.0008 g).  The drinking water standard for lead, which is a known toxin, is 15 micrograms (ug) per liter (= 0.015 mg = 0.000015 g).

The levels of pharmaceuticals that are being detected in water sources are on the order of nanograms per liter.  That’s right, a one-thousandth of a microgram, a one-millionth of a milligram, a one-billionth of a gram, a one-trillionth of a kilogram.  Since that liter of water weighs a kilogram, we talk about ng per liter as “parts per trillion”.  Frankly it’s a modern miracle that we can even measure stuff at these trace levels, and the advances in aqueous analytical chemistry are the only reason we know that some of these compounds are out there in the environment.  (Side note: in true chemistry, there is no such thing as a concentration of “zero”.  Instead, concentrations are not detectable by current technology.)

Don’t let the small concentrations fool you — these compounds are able to do damage at these uber-trace levels…but so far we’ve only seen evidence of damage to fish and amphibians.  When you think about our lifestyles compared to those of fish and amphibians, it kind of makes sense — we’re not the ones constantly bathing in the water in question.  We spend an awful lot of time exposed to air rather than water.  So take a deep breath (no pharmaceuticals in the air, knock on wood) and keep drinking tap water.

This gets tricky when it comes to regulations.  EPA is charged with protection of “navigable waters” under the Clean Water Act, and generally has developed standards for tap water and treated wastewater that protect human health and, to a lesser extent, the environment.  The Clean Water Act itself was born from environmental disasters like the Cuyahoga river catching fire and giant foam piles in rivers and lakes, but most of today’s regulations are about people, a subject most of us can agree upon.  I think it would be a striking development for EPA to begin regulation of trace levels of pharmaceuticals for the protection of aquatic life — there are plenty of non-environmentalists who couldn’t care less about some transgender frogs but sure do care a lot about their water and wastewater bills.

The main solution to these trace contaminants is additional wastewater treatment, whether at a treatment plant or in a septic system, since these point sources are the largest entry point for these compounds into the water supply.  Drugs are designed to deliver the target dose into the body, assuming some fraction of the active ingredient will not be absorbed by the body and will pass through to wastewater.  I don’t think we would ever decide to take lower doses of drugs to protect the environment (again, your cancer or a transgender frog?  I’d probably vote for your cancer, too).  In an odd development, I appear to be advocating for UV treatment of wastewater, once again.  (I did not see that coming, for the record.)

So what’s the conclusion?  Trace levels of pharmaceuticals are out there, but they aren’t high enough to affect human health.  They are high enough to affect fish and amphibians, and it will be interesting to see if EPA develops wastewater discharge limits to protect aquatic life from these compounds.

Whose backyard is best?

There’s a huge market at the moment for rare earth elements that are prolific in our favorite electronic devices.  Most of these are mined in the developing world, with significant proportions in China or Malaysia.  This not only means that these countries are making a killing on our insatiable need for new iPhones, it also means that the elements are extracted with their health and safety standards, and their environmental regulations.  Compared to ours in the US, these are all far less stringent.

So imagine how nice it would be to have some of these things mined in our territory, under our regulations.  Mining companies are dreaming big, especially in Alaska.  High prices of these rare earths have made formerly marginal ore into a serious investment, and in particular, mining companies are dying to extract some 2 billion tons in Pebble Mine.  However, our environmental groups are appropriately skeptical and the pushback has already begun.  Some EPA regulators in Region 10, which serves Alaska, Idaho, Oregon, Washington and 267 Indian Tribes, published a guidance document about the potential environmental hazards of mining in this pristine area, concluding that the risk is too high to even consider a true mining permit application from the Pebble Mine companies.

The only problem with this document is that it sets a fairly broad precedent for stifling private development in privately held land without even giving the parties a chance to describe their intended operations or mitigation measures.  Pebble Mine claims that its will implement the most environmentally friendly mining techniques ever used (quite the claim, but perhaps not that difficult given the haphazard approach often taken in the past and in other locations).  Don’t they deserve to have EPA at least evaluate their proposal?  For example, the Cadiz EIR was full of suspect science — it should become obvious if that’s the case in Pebble Mine, too.

The other issue is the idea of global environmental protection.  If this mine is rejected, we further rely on rare earth sources with lax (by our standards) regulations in foreign countries we don’t necessarily want to support.  I caution any true environmentalist against rejection of American industry and manufacturing on the basis of environmental impacts, without at least considering where those displaced activities will relocate.  Is preservation of our local environment a higher good than preservation of a local environment in another part of the world?  That’s a tough question.

how good are our regs?

Some recent studies on viruses and microbes in our water and wastewater treatment systems should give us all pause.  First, researchers in Wisconsin conducted a very clever study that correlated concentrations of viruses in tap water with rates of illness in the local community.  When chlorine or UV disinfection, which inactivates viruses, was added to those communities’ water treatment systems, the illness rates declined.  The results were conclusive enough that even before the study was formally published, the Wisconsin legislature mandated chlorine or UV disinfection for all water treatment systems in the state.  Of course, the politicians have since interfered, as the newly elected Republican caucus repealed that law last year.  The study suggested that the source of the pertinent viruses was leaking sewer pipes.

A second study came out last year in Minnesota, showing that even a top-of-the-line wastewater treatment plant is ineffective at removing DNA fragments that could confer antibiotic resistance to new microbes.  The treatment plant in question, in Duluth, MN, uses tertiary treatment estimated to be better than 95% of US wastewater treatment plants, and yet genes for antibiotic resistance were found in the effluent and in the pristine water bodies that the plant discharges into.  Even if the microbes have been killed, the DNA can “live on” to spread to other cells.

If our treated wastewater is a potential source of viruses and antibiotic-resistant genes to the environment, then we must ask ourselves if our regulations are sufficient to protect human health and the environment.  Should we measure our drinking water and treated wastewater in a more holistic manner to assess their safety?  Right now, the standard is fecal coliform bacteria as an indicator for all microbiological activity.  Do regular DNA assays need to be included in our standards?

I would argue that adding UV disinfection (quaternary treatment) to wastewater treatment merits consideration.  Although it is costly in energy, the spread of viruses and antibiotic resistance should not be taken lightly, and adding UV treatment to water treatment (already a trend among the facilities that can afford it) does not impact the pathway from the wastewater to the environment.  This is also something to keep in mind for water recycling purposes — you don’t want to drink water if that stuff’s still in there…